Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 8119, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854089

RESUMO

Caffeine is the most consumed alkaloid stimulant in the world. It is synthesized through the activity of three known N-methyltransferase proteins. Here we are reporting on the 422-Mb chromosome-level assembly of the Coffea humblotiana genome, a wild and endangered, naturally caffeine-free, species from the Comoro archipelago. We predicted 32,874 genes and anchored 88.7% of the sequence onto the 11 chromosomes. Comparative analyses with the African Robusta coffee genome (C. canephora) revealed an extensive genome conservation, despite an estimated 11 million years of divergence and a broad diversity of genome sizes within the Coffea genus. In this genome, the absence of caffeine is likely due to the absence of the caffeine synthase gene which converts theobromine into caffeine through an illegitimate recombination mechanism. These findings pave the way for further characterization of caffeine-free species in the Coffea genus and will guide research towards naturally-decaffeinated coffee drinks for consumers.


Assuntos
Coffea/genética , Metiltransferases/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Cafeína/análise , Cromossomos de Plantas , Coffea/química , Coffea/enzimologia , Comores , Hibridização Genômica Comparativa , Evolução Molecular , Metiltransferases/classificação , Metiltransferases/deficiência , Filogenia , Folhas de Planta/química , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Teobromina/análise
2.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563819

RESUMO

Two DNA methyltransferase (DNMTase) genes from Cryphonectria parasitica have been previously identified as CpDmt1 and CpDmt2, which are orthologous to rid and dim-2 of Neurospora crassa, respectively. While global changes in DNA methylation have been associated with fungal sectorization and CpDmt1 but not CpDmt2 has been implicated in the sporadic sectorization, the present study continues to investigate the biological functions of both DNMTase genes. Transcription of both DNMTases is regulated in response to infection with the Cryphonectria hypovirus 1 (CHV1-EP713). CpDmt1 is upregulated and CpDmt2 is downregulated by CHV1 infection. Conidium production and response to heat stress are affected only by mutation of CpDmt1, not by CpDmt2 mutation. Significant changes in virulence are observed in opposite directions; i.e., the CpDmt1-null mutant is hypervirulent, while the CpDmt2-null mutant is hypovirulent. Compared to the CHV1-infected wild type, CHV1-transferred single and double mutants show severe growth retardation: the colony size is less than 10% that of the parental virus-free null mutants, and their titers of transferred CHV1 are higher than that of the wild type, implying that no defect in viral replication occurs. However, as cultivation proceeds, spontaneous viral clearance is observed in hypovirus-infected colonies of the null mutants, which has never been reported in this fungus-virus interaction. This study demonstrates that both DNMTases are significant factors in fungal development and virulence. Each fungal DNMTase affects fungal biology in both common and separate ways. In addition, both genes are essential to the antiviral responses, including viral clearance which depends on their mutations.IMPORTANCE Although relatively few in number, studies of DNA methylation have shown that fungal DNA methylation is implicated in development, genome integrity, and genome defense. While fungal DNMTase has been suggested as playing a role in genome defense, studies of the biological function of fungal DNMTase have been very limited. In this study, we have shown distinct biological functions of two DNA methyltransferases from the chestnut blight fungus C. parasitica We have demonstrated that DNMTases are important to fungal development and virulence. In addition, these genes are shown to play an important role in the fungal response to hypoviral CHV1 infection, including severely retarded colonial growth, and in viral clearance, which has never been previously observed in mycovirus infection. These findings provide a better understanding of the biological functions of fungal DNA methyltransferase and a basis for clarifying the epigenetic regulation of fungal virulence, responses to hypovirus infection, and viral clearance.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Metilação de DNA/genética , Micovírus/fisiologia , Metiltransferases/genética , Metiltransferases/metabolismo , Ascomicetos/genética , Ascomicetos/virologia , DNA Fúngico , Epigênese Genética , Micovírus/genética , Regulação Fúngica da Expressão Gênica , Metiltransferases/classificação , Doenças das Plantas/microbiologia , Virulência
3.
Curr Cancer Drug Targets ; 21(4): 326-352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33504307

RESUMO

The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5' cap N7-methylguanosine (m7G) and 2'-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Metiltransferases , Neoplasias , Processamento Pós-Transcricional do RNA/fisiologia , RNA/metabolismo , Epigênese Genética/genética , Humanos , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Edição de RNA/fisiologia
4.
PLoS Comput Biol ; 16(10): e1008318, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33075080

RESUMO

Fibrillarin (FIB), a methyltransferase essential for life in the vast majority of eukaryotes, is involved in methylation of rRNA required for proper ribosome assembly, as well as methylation of histone H2A of promoter regions of rRNA genes. RNA viral progression that affects both plants and animals requires FIB proteins. Despite the importance and high conservation of fibrillarins, there little is known about the evolutionary dynamics of this small gene family. We applied a phylogenomic microsynteny-network approach to elucidate the evolutionary history of FIB proteins across the Tree of Life. We identified 1063 non-redundant FIB sequences across 1049 completely sequenced genomes from Viruses, Bacteria, Archaea, and Eukarya. FIB is a highly conserved single-copy gene through Archaea and Eukarya lineages, except for plants, which have a gene family expansion due to paleopolyploidy and tandem duplications. We found a high conservation of the FIB genomic context during plant evolution. Surprisingly, FIB in mammals duplicated after the Eutheria split (e.g., ruminants, felines, primates) from therian mammals (e.g., marsupials) to form two main groups of sequences, the FIB and FIB-like groups. The FIB-like group transposed to another genomic context and remained syntenic in all the eutherian mammals. This transposition correlates with differences in the expression patterns of FIB-like proteins and with elevated Ks values potentially due to reduced evolutionary constraints of the duplicated copy. Our results point to a unique evolutionary event in mammals, between FIB and FIB-like genes, that led to non-redundant roles of the vital processes in which this protein is involved.


Assuntos
Proteínas Cromossômicas não Histona , Genômica/métodos , Metiltransferases , Animais , Bactérias/genética , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/classificação , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Sequência Conservada , Eucariotos/genética , Mamíferos/genética , Metilação , Metiltransferases/química , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Plantas/genética , Vírus/genética
5.
Biomolecules ; 10(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971865

RESUMO

Arsenic occurs naturally in the environment, and exists predominantly as inorganic arsenite (As (III) and arsenate As (V)). Arsenic contamination of drinking water has long been recognized as a major global health concern. Arsenic exposure causes changes in skin color and lesions, and more severe health conditions such as black foot disease as well as various cancers originating in the lungs, skin, and bladder. In order to efficiently metabolize and excrete arsenic, it is methylated to monomethylarsonic and dimethylarsinic acid. One single enzyme, arsenic methyltransferase (AS3MT) is responsible for generating both metabolites. AS3MT has been purified from several mammalian and nonmammalian species, and its mRNA sequences were determined from amino acid sequences. With the advent of genome technology, mRNA sequences of AS3MT have been predicted from many species throughout the animal kingdom. Horizontal gene transfer had been postulated for this gene through phylogenetic studies, which suggests the importance of this gene in appropriately handling arsenic exposures in various organisms. An altered ability to methylate arsenic is dependent on specific single nucleotide polymorphisms (SNPs) in AS3MT. Reduced AS3MT activity resulting in poor metabolism of iAs has been shown to reduce expression of the tumor suppressor gene, p16, which is a potential pathway in arsenic carcinogenesis. Arsenic is also known to induce oxidative stress in cells. However, the presence of antioxidant response elements (AREs) in the promoter sequences of AS3MT in several species does not correlate with the ability to methylate arsenic. ARE elements are known to bind NRF2 and induce antioxidant enzymes to combat oxidative stress. NRF2 may be partly responsible for the biotransformation of iAs and the generation of methylated arsenic species via AS3MT. In this article, arsenic metabolism, excretion, and toxicity, a discussion of the AS3MT gene and its evolutionary history, and DNA methylation resulting from arsenic exposure have been reviewed.


Assuntos
Arsênio/metabolismo , Cisteína/metabolismo , Metiltransferases/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Cisteína/genética , Humanos , Metilação , Metiltransferases/classificação , Metiltransferases/genética , Filogenia , Polimorfismo de Nucleotídeo Único
6.
Nucleic Acids Res ; 48(18): 10034-10044, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32453412

RESUMO

S-adenosyl-l-methionine dependent methyltransferases catalyze methyl transfers onto a wide variety of target molecules, including DNA and RNA. We discuss a family of methyltransferases, those that act on the amino groups of adenine or cytosine in DNA, have conserved motifs in a particular order in their amino acid sequence, and are referred to as class beta MTases. Members of this class include M.EcoGII and M.EcoP15I from Escherichia coli, Caulobacter crescentus cell cycle-regulated DNA methyltransferase (CcrM), the MTA1-MTA9 complex from the ciliate Oxytricha, and the mammalian MettL3-MettL14 complex. These methyltransferases all generate N6-methyladenine in DNA, with some members having activity on single-stranded DNA as well as RNA. The beta class of methyltransferases has a unique multimeric feature, forming either homo- or hetero-dimers, allowing the enzyme to use division of labor between two subunits in terms of substrate recognition and methylation. We suggest that M.EcoGII may represent an ancestral form of these enzymes, as its activity is independent of the nucleic acid type (RNA or DNA), its strandedness (single or double), and its sequence (aside from the target adenine).


Assuntos
Evolução Molecular , Metiltransferases/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/enzimologia , Caulobacter crescentus/enzimologia , Escherichia coli/enzimologia , Humanos , Metiltransferases/classificação , Camundongos , Oxytricha/enzimologia , Conformação Proteica , Especificidade por Substrato
7.
Mol Phylogenet Evol ; 149: 106837, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32304827

RESUMO

DNA methyltransferases are proteins that modify DNA via attachment of methyl groups to nucleobases and are ubiquitous across the bacterial, archaeal, and eukaryotic domains of life. Here, we investigated the complex evolutionary history of the large and consequential 4mC/6mA DNA methyltransferase protein family using phylogenetic reconstruction of amino acid sequences. We present a well-supported phylogeny of this family based on systematic sampling of taxa across superphyla of bacteria and archaea. We compared the phylogeny to a current representation of the species tree of life and found that the 4mC/6mA methyltransferase family has a strikingly complex evolutionary history that likely began sometime after the last universal common ancestor of life diverged into the bacterial and archaeal lineages and probably involved many horizontal gene transfers within and between domains. Despite the complexity of its evolutionary history, we inferred that only one significant shift in molecular evolutionary rate characterizes the diversification of this protein family.


Assuntos
DNA/metabolismo , Metiltransferases/classificação , Filogenia , Células Procarióticas/enzimologia , Metilação de DNA/genética , Evolução Molecular , Transferência Genética Horizontal , Funções Verossimilhança , Metiltransferases/genética , Família Multigênica
8.
Nucleic Acids Res ; 47(22): 11771-11789, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31722409

RESUMO

Rediscovered as a potential eukaryotic epigenetic mark, DNA N6-adenine methylation (6mA) varies across species in abundance and its relationships with transcription. Here we characterize AMT1-representing a distinct MT-A70 family methyltransferase-in the ciliate Tetrahymena thermophila. AMT1 loss-of-function leads to severe defects in growth and development. Single Molecule, Real-Time (SMRT) sequencing reveals that AMT1 is required for the bulk of 6mA and all symmetric methylation at the ApT dinucleotides. The detection of hemi-methylated ApT sites suggests a semi-conservative mechanism for maintaining symmetric methylation. AMT1 affects expression of many genes; in particular, RAB46, encoding a Rab family GTPase involved in contractile vacuole function, is likely a direct target. The distribution of 6mA resembles H3K4 methylation and H2A.Z, two conserved epigenetic marks associated with RNA polymerase II transcription. Furthermore, strong 6mA and nucleosome positioning in wild-type cells is attenuated in ΔAMT1 cells. Our results support that AMT1-catalyzed 6mA is an integral part of the transcription-associated epigenetic landscape. AMT1 homologues are generally found in protists and basal fungi featuring ApT hyper-methylation associated with transcription, which are missing in animals, plants, and true fungi. This dichotomy of 6mA functions and the underlying molecular mechanisms may have implications in eukaryotic diversification.


Assuntos
Adenina/metabolismo , Metilação de DNA , Epigênese Genética/fisiologia , Metiltransferases/fisiologia , Tetrahymena thermophila , Transcrição Gênica , Sequência de Bases , Metilação de DNA/genética , Fosfatos de Dinucleosídeos/metabolismo , Eucariotos/genética , Células Eucarióticas , Marcadores Genéticos , Metiltransferases/classificação , Organismos Geneticamente Modificados , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo
9.
Nat Chem Biol ; 15(9): 865-871, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31383972

RESUMO

RNA modification in the form of N6-methyladenosine (m6A) regulates nearly all the post-transcriptional processes. The asymmetric m6A deposition suggests that regional methylation may have distinct functional consequences. However, current RNA biology tools do not distinguish the contribution of individual m6A modifications. Here we report the development of 'm6A editing', a powerful approach that enables m6A installation and erasure from cellular RNAs without changing the primary sequence. We engineered fusions of CRISPR-Cas9 and a single-chain m6A methyltransferase that can be programmed with a guide RNA. The resultant m6A 'writers' allow functional comparison of single site methylation in different messenger RNA regions. We further engineered m6A 'erasers' by fusing CRISPR-Cas9 with ALKBH5 or FTO to achieve site-specific demethylation of RNAs. The development of programmable m6A editing not only expands the scope of RNA engineering, but also facilitates mechanistic understanding of epitranscriptome.


Assuntos
Adenosina/análogos & derivados , Sistemas CRISPR-Cas , Edição de Genes/métodos , Metiltransferases/metabolismo , RNA Mensageiro/metabolismo , Adenosina/química , Adenosina/metabolismo , Sequência de Bases , Linhagem Celular , Humanos , Metiltransferases/classificação , RNA Mensageiro/química , RNA Mensageiro/genética
10.
Sci Rep ; 9(1): 6584, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036863

RESUMO

Human methytransferase like proteins (METTL) are part of a large protein family characterized by the presence of binding domains for S-adenosyl methionine, a co-substrate for methylation reactions. Despite the fact that members of this protein family were shown or predicted to be DNA, RNA or protein methyltransferases, most METTL proteins are still poorly characterized. Identification of complexes in which these potential enzymes act could help to understand their function(s) and substrate specificities. Here we systematically studied interacting partners of METTL protein family members in HeLa cells using label-free quantitative mass spectrometry. We found that, surprisingly, many of the METTL proteins appear to function outside of stable complexes whereas others including METTL7B, METTL8 and METTL9 have high-confidence interaction partners. Our study is the first systematic and comprehensive overview of the interactome of METTL protein family that can provide a crucial resource for further studies of these potential novel methyltransferases.


Assuntos
Sequência de Aminoácidos/genética , Metiltransferases/genética , Família Multigênica/genética , Sítios de Ligação/genética , Células HeLa , Humanos , Metilação , Metiltransferases/química , Metiltransferases/classificação , Ligação Proteica/genética , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
11.
Curr Opin Struct Biol ; 53: 12-21, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29654888

RESUMO

Approximately 2000 structures of methyltransferases (MTases) are currently available, displaying fifteen different folds for binding a methyl donor and providing molecular level insight into nearly half the human methyltransferome. Several MTases involved in gene expression and regulation are catalytically inefficient when isolated, and their catalytic domains often show inhibitory active site architectures. Recently reported structures of complexes that more closely reflect biological context have begun to reveal the structural basis of activation. DNA and particular histone MTases are allosterically activated by binding histone modifications using reader domains or separate reader proteins, and some MTases operating beyond chromatin are activated by binding an activator protein. In this review, we describe the structural status of the human methyltransferome and then discuss newly revealed structural mechanisms of MTase activation.


Assuntos
Metiltransferases , Sítios de Ligação , Domínio Catalítico , Ativação Enzimática , Ativadores de Enzimas/metabolismo , Humanos , Metiltransferases/química , Metiltransferases/classificação , Metiltransferases/metabolismo , Modelos Moleculares , Nucleossomos/metabolismo , Conformação Proteica
12.
J Am Chem Soc ; 139(51): 18623-18631, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29190095

RESUMO

The past decade has seen the discovery of four different classes of radical S-adenosylmethionine (rSAM) methyltransferases that methylate unactivated carbon centers. Whereas the mechanism of class A is well understood, the molecular details of methylation by classes B-D are not. In this study, we present detailed mechanistic investigations of the class C rSAM methyltransferase TbtI involved in the biosynthesis of the potent thiopeptide antibiotic thiomuracin. TbtI C-methylates a Cys-derived thiazole during posttranslational maturation. Product analysis demonstrates that two SAM molecules are required for methylation and that one SAM (SAM1) is converted to 5'-deoxyadenosine and the second SAM (SAM2) is converted to S-adenosyl-l-homocysteine (SAH). Isotope labeling studies show that a hydrogen is transferred from the methyl group of SAM2 to the 5'-deoxyadenosine of SAM1 and the other two hydrogens of the methyl group of SAM2 appear in the methylated product. In addition, a hydrogen appears to be transferred from the ß-position of the thiazole to the methyl group in the product. We also show that the methyl protons in the product can exchange with solvent. A mechanism consistent with these observations is presented that differs from other characterized radical SAM methyltransferases.


Assuntos
Metiltransferases/classificação , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Tiazóis/metabolismo , Antibacterianos/biossíntese , Desoxiadenosinas/metabolismo , Hidrogênio/metabolismo , Metilação , Peptídeos Cíclicos/biossíntese , Prótons , S-Adenosil-Homocisteína/metabolismo , Solventes/química
13.
ACS Chem Biol ; 12(12): 3039-3048, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29096064

RESUMO

Natural product biosynthetic pathways contain a plethora of enzymatic tools to carry out difficult biosynthetic transformations. Here, we discover an unusual mononuclear iron-dependent methyltransferase that acts in the initiation steps of apratoxin A biosynthesis (AprA MT1). Fe3+-replete AprA MT1 catalyzes one or two methyl transfer reactions on the substrate malonyl-ACP (acyl carrier protein), whereas Co2+, Fe2+, Mn2+, and Ni2+ support only a single methyl transfer. MT1 homologues exist within the "GNAT" (GCN5-related N-acetyltransferase) loading modules of several modular biosynthetic pathways with propionyl, isobutyryl, or pivaloyl starter units. GNAT domains are thought to catalyze decarboxylation of malonyl-CoA and acetyl transfer to a carrier protein. In AprA, the GNAT domain lacks both decarboxylation and acyl transfer activity. A crystal structure of the AprA MT1-GNAT di-domain with bound Mn2+, malonate, and the methyl donor S-adenosylmethionine (SAM) reveals that the malonyl substrate is a bidentate metal ligand, indicating that the metal acts as a Lewis acid to promote methylation of the malonyl α-carbon. The GNAT domain is truncated relative to functional homologues. These results afford an expanded understanding of MT1-GNAT structure and activity and permit the functional annotation of homologous GNAT loading modules both with and without methyltransferases, additionally revealing their rapid evolutionary adaptation in different biosynthetic contexts.


Assuntos
Depsipeptídeos/biossíntese , Ferro/metabolismo , Metiltransferases/metabolismo , Policetídeos/química , Depsipeptídeos/química , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Metiltransferases/classificação , Metiltransferases/genética , Modelos Moleculares , Estrutura Molecular , Policetídeos/metabolismo , Conformação Proteica , Domínios Proteicos
14.
Sci Rep ; 7(1): 13522, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29051595

RESUMO

Microbial parasitism, infection, and symbiosis in animals often modulate host endocrine systems, resulting in alterations of phenotypic traits of the host that can have profound effects on the ecology and evolution of both the microorganisms and their hosts. Information about the mechanisms and genetic bases of such modulations by animal parasites is available from studies of steroid hormones. However, reports involving other hormones are scarce. We found that an insect virus, a betaentomopoxvirus, encodes a juvenile hormone acid methyltransferase that can synthesize an important insect hormone, the sesquiterpenoid juvenile hormone. Phylogenetic analysis suggested that this gene is of bacterial origin. Our study challenges the conventional view that functional enzymes in the late phase of the juvenile hormone biosynthesis pathway are almost exclusive to insects or arthropods, and shed light on juvenoid hormone synthesis beyond Eukaryota. This striking example demonstrates that even animal parasites having no metabolic pathways for molecules resembling host hormones can nevertheless influence the synthesis of such hormones, and provides a new context for studying animal parasite strategies in diverse systems such as host-parasite, host-symbiont or host-vector-parasite.


Assuntos
Entomopoxvirinae/genética , Hormônios Juvenis/biossíntese , Metamorfose Biológica/genética , Metiltransferases/genética , Sequência de Aminoácidos , Animais , Hemolinfa/metabolismo , Interações Hospedeiro-Parasita/genética , Insetos/crescimento & desenvolvimento , Larva/metabolismo , Larva/virologia , Legionella/genética , Metiltransferases/classificação , Metiltransferases/metabolismo , Filogenia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
15.
J Biol Chem ; 292(43): 17950-17962, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28887308

RESUMO

Lysine methylation is an important and much-studied posttranslational modification of nuclear and cytosolic proteins but is present also in mitochondria. However, the responsible mitochondrial lysine-specific methyltransferases (KMTs) remain largely elusive. Here, we investigated METTL12, a mitochondrial human S-adenosylmethionine (AdoMet)-dependent methyltransferase and found it to methylate a single protein in mitochondrial extracts, identified as citrate synthase (CS). Using several in vitro and in vivo approaches, we demonstrated that METTL12 methylates CS on Lys-395, which is localized in the CS active site. Interestingly, the METTL12-mediated methylation inhibited CS activity and was blocked by the CS substrate oxaloacetate. Moreover, METTL12 was strongly inhibited by the reaction product S-adenosylhomocysteine (AdoHcy). In summary, we have uncovered a novel human mitochondrial KMT that introduces a methyl modification into a metabolic enzyme and whose activity can be modulated by metabolic cues. Based on the established naming nomenclature for similar enzymes, we suggest that METTL12 be renamed CS-KMT (gene name CSKMT).


Assuntos
Citrato (si)-Sintase/metabolismo , Metiltransferases/metabolismo , Proteínas Mitocondriais/metabolismo , Ácido Oxaloacético/metabolismo , S-Adenosil-Homocisteína/metabolismo , Citrato (si)-Sintase/genética , Células HeLa , Humanos , Metilação , Metiltransferases/classificação , Metiltransferases/genética , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética
16.
Biochim Biophys Acta Biomembr ; 1859(12): 2279-2288, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28912104

RESUMO

Bacterial phospholipid N-methyltransferases (Pmts) catalyze the formation of phosphatidylcholine (PC) via successive N-methylation of phosphatidylethanolamine (PE). They are classified into Sinorhizobium-type and Rhodobacter-type enzymes. The Sinorhizobium-type PmtA protein from the plant pathogen Agrobacterium tumefaciens is recruited to anionic lipids in the cytoplasmic membrane via two amphipathic helices called αA and αF. Besides its enzymatic activity, PmtA is able to remodel membranes mediated by the αA domain. According to the Heliquest program, αA- and αF-like amphipathic helices are also present in other Sinorhizobium- and Rhodobacter-type Pmt enzymes suggesting a conserved architecture of α-helical membrane-binding regions in these methyltransferases. As representatives of the two Pmt families, we investigated the membrane binding and remodeling capacity of Bradyrhizobium japonicum PmtA (Sinorhizobium-type) and PmtX1 (Rhodobacter-type), which act cooperatively to produce PC in consecutive methylation steps. We found that the αA regions in both enzymes bind anionic lipids similar to αA of A. tumefaciens PmtA. Membrane binding of PmtX1 αA is enhanced by its substrate monomethyl-PE indicating a substrate-controlled membrane association. The αA regions of all investigated enzymes remodel spherical liposomes into tubular filaments suggesting a conserved membrane-remodeling capacity of bacterial Pmts. Based on these results we propose that the molecular details of membrane-binding and remodeling are conserved among bacterial Pmts.


Assuntos
Agrobacterium tumefaciens/enzimologia , Proteínas de Bactérias/química , Lipossomos/química , Metiltransferases/química , Rhodobacter/enzimologia , Sinorhizobium/enzimologia , Agrobacterium tumefaciens/genética , Sequência de Aminoácidos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Membrana Celular/química , Membrana Celular/metabolismo , Clonagem Molecular , Sequência Conservada , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Isoenzimas/química , Isoenzimas/classificação , Isoenzimas/genética , Isoenzimas/metabolismo , Lipossomos/metabolismo , Metilação , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/classificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter/genética , Sinorhizobium/genética , Especificidade por Substrato
17.
Mol Phylogenet Evol ; 114: 401-414, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28694102

RESUMO

DMSP (dimethylsulfoniopropionate) is an ecologically important sulfur metabolite commonly produced by marine algae and by some higher plant lineages, including the polyploid salt marsh genus Spartina (Poaceae). The molecular mechanisms and genes involved in the DMSP biosynthesis pathways are still unknown. In this study, we performed comparative analyses of DMSP amounts and molecular phylogenetic analyses to decipher the origin of DMSP in Spartina that represents one of the major source of terrestrial DMSP in coastal marshes. DMSP content was explored in 14 Spartina species using 1H Nuclear Magnetic Resonance (NMR) spectroscopy and Ultra Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS). Putative genes encoding the four enzymatic steps of the DMSP biosynthesis pathway in Spartina were examined and their evolutionary dynamics were studied. We found that the hexaploid lineage containing S. alterniflora, S. foliosa and S. maritima and their derived hybrids and allopolyploids are all able to produce DMSP, in contrast to species in the tetraploid clade. Thus, examination of DMSP synthesis in a phylogenetic context implicated a single origin of this physiological innovation, which occurred in the ancestor of the hexaploid Spartina lineage, 3-6MYA. Candidate genes specific to the Spartina DMSP biosynthesis pathway were also retrieved from Spartina transcriptomes, and provide a framework for future investigations to decipher the molecular mechanisms involved in this plant phenotypic novelty that has major ecological impacts in saltmarsh ecosystems.


Assuntos
Evolução Molecular , Poaceae/metabolismo , Compostos de Sulfônio/metabolismo , Aldeído Desidrogenase/classificação , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Carboxiliases/classificação , Carboxiliases/genética , Carboxiliases/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/classificação , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Filogenia , Poaceae/classificação , Poaceae/genética , Poliploidia , Compostos de Sulfônio/análise
18.
Int J Dev Biol ; 60(1-3): 65-9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27002806

RESUMO

Methylation of the guanosine cap structure at the 5' end of mRNA is essential for efficient translation of all eukaryotic cellular mRNAs, gene expression and cell viability and promotes transcription, splicing, polyadenylation and nuclear export of mRNA. In the current study, we present the spatial expression pattern of the Xenopus laevis rnmt homologue. A high percentage of protein sequence similarity, especially within the methyltransferase domain, as well as an increased expression in the cells of the transcriptionally active stages, suggests a conserved RNA cap methylation function. Spatial expression analysis identified expression domains in the brain, the retina, the lens, the otic vesicles and the branchial arches.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Metiltransferases/genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/embriologia , Encéfalo/metabolismo , Região Branquial/embriologia , Região Branquial/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica/métodos , Hibridização In Situ , Metiltransferases/classificação , Filogenia , Retina/embriologia , Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Xenopus laevis/embriologia
19.
Mol Biosyst ; 12(5): 1615-25, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-26983646

RESUMO

Tuberculosis is a devastating disease, taking one human life every 20 seconds globally. We hypothesize that professional pathogens such as M.tb have acquired specific features that might assist in causing infection, persistence and transmissible pathology in their host. We have identified 121 methyltransferases (MTases) in the M.tb proteome, which use a variety of substrates - DNA, RNA, protein, intermediates of mycolic acid biosynthesis and other fatty acids - that are involved in cellular maintenance within the host. A comparative analysis of the proteome of the virulent strain H37Rv and the avirulent strain H37Ra identified 3 MTases, which displayed significant variations in terms of N-terminal extension/deletion and point mutations, possibly impacting various physicochemical properties. The cross-proteomic comparison of MTases of M.tb H37Rv with 15 different Mycobacterium species revealed the acquisition of novel MTases in a MTB complex as a function of evolution. Phylogenetic analysis revealed that these newly acquired MTases showed common roots with certain extremophiles such as halophilic and acidophilic organisms. Our results establish an evolutionary relationship of M.tb with halotolerant organisms and also the role of MTases of M.tb in withstanding the host osmotic stress, thereby pointing to their likely role in pathogenesis, virulence and niche adaptation.


Assuntos
Metiltransferases/metabolismo , Mycobacterium/enzimologia , Mycobacterium/patogenicidade , Antígenos de Bactérias/metabolismo , DNA/metabolismo , Transferência Genética Horizontal/genética , Genes Bacterianos , Genes Essenciais , Metiltransferases/classificação , Metiltransferases/genética , Mycobacterium/genética , Mycobacterium/imunologia , Proteômica , Especificidade da Espécie , Fatores de Virulência/metabolismo
20.
Plant Biol (Stuttg) ; 17(4): 877-92, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25683375

RESUMO

In monocots, lignin content has a strong impact on the digestibility of the cell wall fraction. Engineering lignin biosynthesis requires a profound knowledge of the role of paralogues in the multigene families that constitute the monolignol biosynthesis pathway. We applied a bioinformatics approach for genome-wide identification of candidate genes in Lolium perenne that are likely to be involved in the biosynthesis of monolignols. More specifically, we performed functional subtyping of phylogenetic clades in four multigene families: 4CL, COMT, CAD and CCR. Essential residues were considered for functional clade delineation within these families. This classification was complemented with previously published experimental evidence on gene expression, gene function and enzymatic activity in closely related crops and model species. This allowed us to assign functions to novel identified L. perenne genes, and to assess functional redundancy among paralogues. We found that two 4CL paralogues, two COMT paralogues, three CCR paralogues and one CAD gene are prime targets for genetic studies to engineer developmentally regulated lignin in this species. Based on the delineation of sequence conservation between paralogues and a first analysis of allelic diversity, we discuss possibilities to further study the roles of these paralogues in lignin biosynthesis, including expression analysis, reverse genetics and forward genetics, such as association mapping. We propose criteria to prioritise paralogues within multigene families and certain SNPs within these genes for developing genotyping assays or increasing power in association mapping studies. Although L. perenne was the target of the analyses presented here, this functional subtyping of phylogenetic clades represents a valuable tool for studies investigating monolignol biosynthesis genes in other monocot species.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Lolium/genética , Família Multigênica , Proteínas de Plantas/genética , Oxirredutases do Álcool/classificação , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Aldeído Oxirredutases/classificação , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Sequência de Bases , Vias Biossintéticas , Coenzima A Ligases/classificação , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Regulação Enzimológica da Expressão Gênica , Genótipo , Lolium/metabolismo , Metiltransferases/classificação , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...